Nozzilla: P2P IPTV Distribution for an IMS-based NGN

Alex Bikfalvi, Jaime García-Reinoso, Iván Vidal, Francisco Valera IMDEA Networks / University Carlos III of Madrid alex.bikfalvi@imdea.org

Overview: P2P, NGN and IPTV

- Does it make sense combining P2P and NGN (IMS) technologies?
- How can we do this?

2

The Internet... in 2004

- P2P traffic was 60% and rising
 - ISPs identified P2P as a major challenge in network design
 - It affects the QoS for all users
 - Mostly, file-sharing: BitTorrent, eDonkey, Kad, Gnutella

The Internet... in 2007

- Lately... the HTTP traffic is gaining the share back
 - … in terms of percentage of total traffic (not absolute value)

The Internet... in 2007 and beyond

- More than a third of the HTTP traffic is video streaming
- YouTube is the most popular; counts for around 20%
- That's about 10% of all Internet traffic

■ Web ■ Wiedbio ■ AQutohieor ■ YouthTeurbe= 🖬 ioiteboer Video

Source: Magid Media Futures survey

• The (near) future...

Internet video, the new broadband "killer" application?

CONTENT

BioGridNet

- More "***Tube" service providers?
- User generated content and commercial content

IARIA 5th International Conference on Networking and Services , April 24, 2009

IP Multimedia Subsystem

- A platform for IP multimedia services
 - Initially designed by 3GPP as an evolution of GSM/UMTS
 - Ourrently extended to many more access networks
- Ore of a Next Generation Network (TISPAN)

Why P₂P?

Media streaming is extremely expensive

- Video streaming applications target a lot of receivers
- Streaming servers need a lot of bandwidth and computing power
- They may not be able to serve everybody
- Existing solutions in the Internet

Solution	Pros	Cons
Client/Server	Simple	Not scalable
CDN	Server not overloaded	Complex and costly
IP Multicast	Good network utilization	Lack of deployment
P2P	Availability and cost	Utilization, reliability

P₂P issues

9 P2P looks fine... but:

- Peers may have an unpredictable behavior
- Resources (bandwidth, delay) may not be adequate
- We need uplink resources as well

However, in NGN/IMS:

Some peers may be considered stable (e.g. RGW, STB)

Indea

CONTENT

BioGridNet

- Resources are known and reserved
 - Once reserved, they are guaranteed

Trees vs. meshes

Irees

- Mimic multicast
- Each peer selects a parent peer
- Ite content/stream can be divided and sent across several trees
- Meshes
 - A peer obtains pieces from any available peer
 - There is not a strict relationship: child-parent
 - Instead peers can collaborate in sharing pieces

Application Level Multicast

Packet replication is done by the peers

- ... meaning the same packets traverse same links several times
- ... but peer uplink bandwidth is (very) limited
- ... logical neighbors may be many hops away
- ... peers (i.e. nodes) come and leave as they wish

Multicast overlay topology: tree

• The root can be the media server or a client peer

IARIA 5th International Conference on Networking and Services , April 24, 2009

Where P₂P?

- 9 P2P media vs. P2P signaling
 - Ontil now we discussed P2P in media plane
- What is P2P signaling?
 - Discovery of other peers using a P2P protocol
 - Sor trees: a structured protocol (DHT) to find a parent
 - Sor meshes: an unstructured protocol to find other peers
- With P2P signaling
 - The functionality is distributed
 - No need of a central entity

What is Nozzilla?

The Nozzilla service is intended as an adaptation layer between the multimedia content and the mechanism (P2P or otherwise) used for content distribution

• Video content may be the new killer app, but...

- ... other services can benefit from P2P too (conferencing, software distribution)
- … even video may have different requirements (IPTV ≠ VoD)
- Nozzilla Content Distribution Service Provider
 - Intermediary between the IPTV Service Provider and IMS + transport layer
 - Makes the content distribution transparent for the IPTV provider
 - Hides the specifics of the media content to the IMS/transport

Nozzilla

- A distributed IPTV streaming system in an NGN
 - Is a feature offered by the transport provider to the service provider
 - Gan use the spare capacity in the transport network
 - Spares the service provider of equipment and bandwidth costs
 - The transport provider will charge the service provider
- Problem analysis
 - P2P network made of NGN residential gateways (RGW)
 - Expected low churn rate (a higher stability than in usual P2P networks)
 - Traffic quality of service is guaranteed (flow QoS reservation)
 - RGW can utilize "spare capacity": capacity that physically exists on the subscriber line, but is not paid for by the customer
 - P2P traffic is allowed by default in the TP network
 - TV streaming traffic is reserved with IMS (using SIP signaling)

A possible business model

Connecting to the IPTV service

Connecting to the IPTV service

P2P prototype

- Initial research: P2P in signaling and media
- Nozzilla is similar to SplitStream:
 - P2P protocol used to create multicast trees for video streaming
 - Based on Scribe/Pastry
 - Uses multiple stripe delivery (more robust, supports multiple description coding)
- However:
 - Takes into account the uplink resources at any time
 - Peers with resources are always considered interior nodes
 - Ohildren can easily identify these peers
 - Peers re-compute resources whenever something changes

ioGridNet

P2P prototype

- Sor the purposes of this presentation
 - We have three stripes with a different priority

Example: 3 stripes

High priority (HP)Medium priority (MP)Low priority (LP)

- Use a slice in the hash space to contain *nodes* that can be interior nodes for each stripe
- Use an extra slice to contain *nodes* that cannot be interior nodes
- A peer computes its resources and can become a *node* in each slice

Joining Tree Performance

Number of hops needed to join the tree

- Decreases with increasing the resources
- The improvement is significant when resources are low

20

IARIA 5th International Conference on Networking and Services , April 24, 2009

Tree Geometry

Let's see if we use P2P or client/server

- Probably we don't want each peer to have 50% resources
- Otherwise, the root load is lower even for 10000 peers
- Tree depth is reasonable, but increases with the resources

IARIA 5th International Conference on Networking and Services , April 24, 2009

Summary for Nozzilla prototype

Oharacteristics

- P2P protocol to create multicast trees for video streaming
- Multi-path video delivery (multiple stripes)
- Takes into account uplink resources
- Changes the geometry of the multicast tree to decrease the root load (enables hybrid topologies)

9 Behavior

- Low joining effort
- Low root load for reasonable resources
- Lengthier video path, may impact reliability

22

Conclusions

- P2P content distribution in IMS = P2P in a managed network
- Does it make sense?
 - Bulk of the Internet traffic: P2P and video
 - Telcos don't make money from selling bandwidth
 - IMS/NG is the right platform for telcos
 - 9 P2P in the transport layer could be a cost-effective approach
 - ISPAN began working in this direction (first draft Nov '08)

