
Lab 3

Accessing GSM Functions on an Android Smartphone

1 Lab Overview

1.1 Goals

�e objective of this practical exercise is to create an application for a smartphone with the Android mobile
operating system, which can access the GSM functionality. To write our application, we shall use the Java
programming language with the Eclipse integrated development environment (IDE).

1.2 Software Tools

During this lab, we shall use a customized version of the Eclipse platform, called Android Development
Tools or ADT, which includes the functionality and the API to easily create applications for the Android
OS. In addition, the so�ware package includes an Android smartphone emulator, called Android Virtual
Device or AVD, which we shall use to test our code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design the GUI 

Develop the functionality 

Load and run in emulator 

Test from Telnet console 

1 

2 

3 

4 

Figure 1:�e steps taken to design, develop, run and test an Android application.

�e �gure 1 illustrates the steps we take to create our application. �e ADTmakes it possible to perform
all these steps from the same integrated environment.

2 Lab Assignment

�is lab consists of two tasks.

• For the �rst, we develop a simple Android application that displays several static GSM parameters,
such as subscriber and equipment identity numbers.

• For the second, we display sevaral dynamic GSM parameters, such as roaming indication and radio
signal strength.

1



For evaluation, you should upload to Aula Global your code plus the answer to the lab questions, as a
single archive �le. �e deadline is on February 22, 2013. �e answers to questions is 60% of the �nal mark,
uploaded code is 40% of the �nal mark.

3 Lab Steps

3.1 Step 1 -- Download / Open the Android Development Tools

Open or download the Android Development Tools from the following web site:
http://developer.android.com/sdk/index.html

or from a link indicated by your instructor. Unpack the ADT in an empty folder.
Start the IDE by opening the eclipse program from the eclipse folder. When staring the IDE for the �rst

time, you will be asked to select the folder where you want to store your Eclipse projects, as shown in the
�gure 2. You may choose the default or create a new folder for this purpose.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Selecting the default ADT folder.

3.2 Step 2 -- Create an Android Application Project

1. Create a new Android application project from the File >New >Android Application Project. Enter
the application name such as GsmInfo and the project package name edu.upf.gsminfo. Click Next.

2. On the following wizard steps, you may use the default settings for con�guring the project, selecting
an icon, and creating a new activity. A�er the wizard completes, select Finish.

3. A�er the new Android application project is created, the IDE displays the main activity or GUI of
our application, called activity main.xml if you selected the default settings. �e activity can be
visualized and edited in two di�erent ways: as an XML �le or using a graphical designer. You may
switch between these di�erent modes using the buttons from the bottom of the activity main.xml

frame, as shown in the �gure 3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Switching between the XML and the designmode of the Android activity.

3.3 Step 3 -- Test the Application in an Android Virtual Device

By default the Android application displays a simple Hello World! message. Now it is time to compile and
test or application using the Android smartphone emulator, or AVD. For this purpose, we must create a
new running con�guration.

2

http://developer.android.com/sdk/index.html


1. Select the Run >Run Configurationsmenu. A new dialog opens, where we can create a new running
con�guration.

2. In the opened dialog, select Android Application from the le�-hand side list, and the click on the
New button.

3. A new con�guration is created, and the dialog displays three new tabs: Android, Target, and
Common. In the Name �eld, you can select a di�erent name for the con�guration.

4. In the Android tab, use the Browse button to select our current project, as the project to execute in
this con�guration.

5. In the Target tab, we create and select a new Android Virtual Device to emulate the smartphone.
Open the Android Virtual Device Manager, by clicking on theManager button.

6. In the manager, from the New button, create a new virtual device. Select a name, choose a device
type of your own preference, and you may leave the remaining settings on their default values.

7. A�er creating the device, and closing the manager, refresh the list of Android virtual devices used
in the project con�guration, and check the device we just created as the preferred one.

8. Click Apply and then Run to begin running the application on the emulated device.

3.4 Step 4 -- Interacting with the Android Virtual Device

�e Android Virtual Device or AVD, emulates an Android smartphone. When staring the virtual device for
the �rst time, please be patient and wait for the device’s operating system to load. Our Android application
is automatically loaded, installed and started on the phone. A virtual keyboard allows us to interact with
the phone, in addition to the mouse, which can be used to simulate the touching of the touch screen, as
illustrated in the �gure 4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: An Android Virtual Device (AVD) running on local port 5554.

Because the Android Virtual Device emulates the behavior of a real life phone, it cannot be used to
make or receive real life phone calls. However, this characteristic can be emulated as well, in order to test
Android applications. For this purpose, the AVD allows a Telnet connection on a given local port. �e
port number is displayed in the title of the emulator window, and usually starts with 5554.

3



We can use putty as a Telnet client to connect to AVD, and send commands that will change the
behavior of the emulated phone.

1. Open putty and use the Telnet option to connect to the AVD on the speci�ed port number.

2. Once connected, a new text-line console appears, which we can use to send commands to the AVD,
as shown below.
Android Console: type ’help ’ for a list of commands
OK

3. At any time, you can type help or ? to display the commands available.

4. During this practice you shall use the gsm command to simulate the behavior of a real-life GSM
network. Type the gsm command in the console to display the list of the available options, as shown
below:
help gsm
allows you to change GSM -related settings , or to make a new inbound phone
call

available sub -commands:
gsm list list current phone calls
gsm call create inbound phone call
gsm busy close waiting outbound call as busy
gsm hold change the state of an oubtound call to ’held ’
gsm accept change the state of an outbound call to ’active ’
gsm cancel disconnect an inbound or outbound phone call
gsm data modify data connection state
gsm voice modify voice connection state
gsm status display GSM status
gsm signal set sets the rssi and ber

OK

5. Test some of these commands, and observe the behavior of the phone. You may start each command
with the help or ? keywords to display additional options.

Questions

What is the Telnet command to simulate an incoming telephone call?

What is the Telnet command to send an SMS to the virtual smartphone?

Change the gsm voice setting to off and attempt to perform a phone call from the AVD. What happens?

3.5 Step 5 -- Design the Application GUI

Return the Android Development Tools. Now, we shall design the GUI of our Android application, using
the GUI designer. If you are an experienced Android developer, you may also edit your code in XML
mode.

1. First, remove the Hello World! TextView component from the main activity.

2. From the components palette, on the le�-hand side, open the Composite set, and click and drag
a ScrollView component to the activity window. We shall use this component to help us scroll
through the text that we shall display later. Use the mouse to resize the scroll view component to �ll

4



the entire activity window. �en, in the component properties list, at the right-bottom side, set the
component Id to @+id/scrollView.

3. In the component Outline window, on the right-top side, select the LinearLayout of the scroll view.
In the component properties, set the Layout Parameters >Height to wrap content.

4. Finally, we shall add a component where we can display text. To this end, go to the FormWidgets
components set, and click and drag a TextView component, on top of the previous scroll view. Resize
the text view component to �ll the entire activity screen. Change the Id to @+id/textView. Set the
Layout Parameters >Height to wrap content. Set the Text property to an empty string.

5. Switch to the XML display of the activity user interface. �e XML should be similar to the one
displayed below. Alternatively, you may copy and paste this code into your XML �le.

6. Compile and test your application.

<RelativeLayout xmlns:android="http:// schemas.android.com/apk/res/android"
xmlns:tools="http:// schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity" >

<ScrollView
android:id="@+id/scrollView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentLeft="true"
android:layout_alignParentRight="true"
android:layout_alignParentTop="true" >

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content" >

<TextView
android:id="@+id/textView"
android:layout_width="match_parent"
android:layout_height="wrap_content" />

</LinearLayout >
</ScrollView >

</RelativeLayout >

3.6 Step 6 -- Develop Your Code

�e Android Development Tools IDE uses the user interface XML to automatically generate the Java code
needed to interact with the GUI components. However, for each GUI component we want to access, we
need to declare a corresponding variable in our code using the findViewByIdmethod.

1. Open the Java code �leMainActivity.java corresponding to our application. You can open the �le
using the Package Explorer, under the src >edu.upf.gsminfo package path.

2. We need to add a package that allows us to declare a variable corresponding to the text view from
the user interface.

5



import android.widget.TextView;

3. We declare a new variable within the main class of our application, corresponding to the text view
component.
public class MainActivity extends Activity {

private TextView textView;

...
}

4. We add the remaining of the code for our application, to the onCreate method, which is called
every time the application is created.
protected void onCreate(Bundle savedInstanceState) {

...
}

5. In thismethod, �rst we initialize the text view variable by using the component Id, declared previously
with the user interface designer.
this.textView = (TextView)this.findViewById(R.id.textView );

6. To display a text on the user interface, we can set or append a string to the text view component
using any of the following methods. To display text, we shall add a new onStartmethod, such that
the text is updated every time we open the application.
protected void onStart () {

super.onStart ();
...
this.textView.setText("Set this text.\n");
...
this.textView.append("Append this text.\n");

}

7. Test your application. You should see your application, similar to the one displayed in the �gure 5.

4 Lab Tasks

4.1 Display Static GSM Parameters

We use the android.telephony package to read and display the GSM parameters. �e key Java class to
achieve this objective is called TelephonyManager, which features a large set of methods that we can use.

1. Open the Android API documentation in your browser at the following URL:
http://developer.android.com/reference/android/telephony/TelephonyManager.html .
Use it to determine which methods return GSM parameters that could be of our interest.

2. To access the telephony service on an Android phone, �rst, we must create an instance (that is an
object) of the TelephonyManager class. To do this, we create a new variable at the beginning of the
class, as shown below.

6

http://developer.android.com/reference/android/telephony/TelephonyManager.html


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:Displaying a string in the Android application.

private TelephonyManager telephonyManager;

3. �en, we create the class instance, by adding the following line of code in the onCreatemethod.
this.telephonyManager =

(TelephonyManager) this.getSystemService(TELEPHONY_SERVICE );

4. Now, we can use the newly created telephony manager to display GSM parameters for our smarth-
phone. For example, we can display the IMEI (International Mobile Equipment Identity number)
by calling the getDeviceIdmethod, as shown below. We use a try...catch statement to prevent
the application crashing if the telephony manager throws an exception.

5. Test now your application. When successful, your application should look like in the �gure 6.

Questions

Does the application display the IMEI? Was any change required?

What other methods do you know for displaying the IMEI of a mobile phone?

7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:Displaying the IMEI.

Tasks

Display the phone type. What method do you use? What does the value mean?

Display the IMEISV. What method do you use? What value do you obtain?

Display the network type. What method do you use? What does the value mean?

Display the call state. What method do you use? What does the value mean?

Display the IMSI. What method do you use?

Display the MSISDN. What method do you use?

Display the SIM serial. What method do you use?

Which is mobile country code of the current subscriber? Which is its mobile network code? How do you
find it?

Which is mobile country code of the current registered operator? Which is its mobile network code?
Are the MCC and MNC of the subscriber equal to the ones of the current operator? Why? How can you
change them? Test your application and note the results.

4.2 Display Dynamic GSM Parameters

In this task, we shall dynamically display GSM parameters, such as changes of the phone or network state.
To this end, we shall use the PhoneStateListener class. Check out the API documentation to become
familiar to this class, how you can use it, and what information it provides.

1. First, open the Android API documentation in your browser at the following URL:
http://developer.android.com/reference/android/telephony/PhoneStateListener.html .
Use it to determine which methods return GSM parameters that could be of our interest.

2. Second, we need to create a new class, which extends PhoneStateListener and overrides itsmethods.
We shall call this class Listener, for simplicity, and we shall declare it within our main class, as
shown below. �is class shall receive noti�cations when the GSM parameters change. To write to
the GUI text view, we add a local TextView variable, which we initialize via the class constructor.

8

http://developer.android.com/reference/android/telephony/PhoneStateListener.html


public class MainActivity extends Activity {
...

private class Listener extends PhoneStateListener {
...
private TextView textView;

public Listener(TextView textView) {
this.textView = textView;

}
...

}

...
}

Questions

What are the 9 phone state parameters that we can follow using this class? Use the API documentation
for help.

3. Next, we declare a new variable for our newly created Listener class, within the main class.
public class MainActivity extends Activity {

...
private Listener listener;
...

}

4. �en, we create a new instance of this class, in the onCreatemethod.
protected void onCreate(Bundle savedInstanceState) {

...
this.listener = new Listener ();
...

}

5. To receive noti�cations when GSM parameters change, we must inform the telephony manager of
the type of event which we want to receive. �ese are listed as constants of the PhoneStateListener
class. We enable the listening, using the code below. As shown in the example, to listen to multiple
events at the same time, we separate them by pipe (|).
protected void onCreate(Bundle savedInstanceState) {

...
this.telephonyManager.listen(this.listener ,

PhoneStateListener.LISTEN_CALL_STATE |
PhoneStateListener.LISTEN_DATA_ACTIVITY );

...
}

6. Now, we have to implement themethods inside the listener class, to receive the data for the parameters
we want to process. For example, if we want to listen on the LISTEN DATA ACTIVITY event, we shall
implement the onDataActivitymethod, as follows.

9



private class Listener extends PhoneStateListener {
...
public void onDataActivity(int direction) {

this.textView.append("Data activity: " + direction + "\n");
}
...

}

Tasks

Create a method to listen and display the call state. What value do you obtain? What does it mean?

Use the Telnet console to make a call. Does anything change? How?

Create a method to listen and display the service state. What information can you display?

Use the Telnet console to change the voice or data GSM state. Does anything change? How?

�e following is a set of bonus tasks for which you can obtain 15 % bonus points.

Bonus Tasks

Create a method to listen and display the signal strength. What information can you display?

Use the Telnet console to change the signal strength and observe what changes. No need to write
anything for this point.

What do the numbers in the signal strength information mean? What is the equivalent signal strength in
dBm for the numeric value you obtain? Tip: Use the 3GPP standard TS 27.007 section 8.5, to answer this
question.

10


	Lab Overview
	Goals
	Software Tools

	Lab Assignment
	Lab Steps
	Step 1 – Download / Open the Android Development Tools
	Step 2 – Create an Android Application Project
	Step 3 – Test the Application in an Android Virtual Device
	Step 4 – Interacting with the Android Virtual Device
	Step 5 – Design the Application GUI
	Step 6 – Develop Your Code

	Lab Tasks
	Display Static GSM Parameters
	Display Dynamic GSM Parameters


