
Containerizing Network
Services
Alex Bikfalvi ∙ Xavier León

2

Network Services

Neutron

LBaaS

VPNaaS FWaaS

Dynamic
Routing

3

Why Containers?

LBaaS

VPNaaS FWaaS

Dynamic
Routing

4

Why Containers?

Similar lifecycle
Virtualizing networks functions requires lightweight isolation

Scalability
Scale-out according to the compute resources

Resiliency
Container health detection and fail-over

Multi-vendor or project
Alternative solutions can be leveraged side-by-side

Management
Allow operators to adjust container workload across hardware infrastructure

VPN

VPN

LB

FW

BGP

BGP

5

Service Containers

OpenStack ∙ Neutron

Neutron Plugin

Compute
Servers

LBaaS FWaaS VPNaaS BGP1

2

Service
Containers

3

4

Service Containers
HAProxy

Ryu BGP

Quagga

LibreSwan

OpenSwan

BaGPipe

6

Key Requirements

Scalability
Containers scale-out with the number of available compute nodes

1

High Availability
Seamless failover on container or compute failure

2

Container Health
Report the running status of the network service software

Container Migration
Cloud operator tools to manage network service containers

Scheduling Policies
Container affinity, host selection and fate-sharing

3

4

5

7

Containers in MidoNet

Layer 2

Router
Peering

NAT

LBaaS

VPNaaS Layer 3

Layer 2 & 3

Gateways Firewall

Service Containers

8

OpenStack with MidoNet
OpenStack ∙ Neutron

MidoNet Plugin
Northbound

Southbound

MidoNet
Controller

Southbound
Database

Compute with
MidoNet Agent

Instances

Control Plane Network

Data Plane Network

NEUTRON model

MIDONET model

9

Intelligence at the Edge

Private IP Network

State ClusterGateway

Compute Hosts

Internet

1

VM 1

VM 2

MidoNet Agent

VM 1

MidoNet Agent

Linux Kernel

VM 1 VM 2

Virtual Tenant
Router A

Virtual
Switch A1

Virtual Provider
Router

Virtual
Switch A2

1

2

2

3

4

3

4

VM 1 sends a packet through the virtual network

MN Agent fetches the virtual topology/state

It simulates the packet through the virtual network

It installs a flow rule in the kernel at the ingress host

Tunnel

5 Tunnel packets to egress host

5

10

Peeking Under the Hood

Virtual
Machine

VM 1

MidoNet
Agent

OVS Kernel Module

Linux Kernel

Ingress Compute

Virtual
Machine

VM 2

MidoNet
Agent

OVS Kernel Module

Linux Kernel

Egress Compute

Private IP Network

VXLAN / GREUPDIPv4Outer Ethernet

VM 1 VM 2

Virtual Tenant
Router A

Virtual
Switch A1

Virtual Topology

Physical Topology

Packet

Packet

Virtual
Switch A2

User Mode

Kernel Mode

1

2

3

4

Packet sent by VM1 misses the OVS datapath

Packet sent to the MidoNet Agent via Netlink

The MidoNet Agent processes and simulates the packet

It installs a flow in the kernel at the ingress host

5 Tunnel packets to egress host

1 2

3

4

5

Northbound

Southbound

11

MidoNet with Containers

Southbound
Database

Compute with
MidoNet Agent

Instances

OpenStack ∙ Neutron

MidoNet Plugin

PORT
Router or Network, Container Reference

SERVICE CONTAINER
Container Configuration

SERVICE CONTAINER GROUP
Scheduling Policy

SERVICE
LBaaS, VPNaaS, BGP

MidoNet
Controller

Northbound

Southbound

12

MidoNet with Containers

Southbound
Database

Compute with
MidoNet Agent

Instances

OpenStack ∙ Neutron

MidoNet Plugin

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

MidoNet
Controller

13

MidoNet with Containers

Southbound
Database

Compute with
MidoNet Agent

Instances

OpenStack ∙ Neutron

MidoNet Plugin

MidoNet
Controller

1 Northbound to southbound translation

1

2 Scheduler container at a compute node

2

3 Launch container

34 Computes report the container status

4

5 Controller monitors the status

5

14

Live Demo
VPNaaS with Service Containers

15

Physical Layer
CONTROLLER
10.0.0.10

COMPUTE-1
10.0.0.11

COMPUTE-2
10.0.0.12

COMPUTE

MIDONET agent NOVA compute

CONTROLLER

MIDONET agent NOVA compute

MIDONET cluster

DATABASE
zookeeper

NEUTRON
NOVA api

GLANCE api
KEYSTONE

16

Virtual Topology

MERCURY
192.168.1.0/24

VENUS
192.168.2.0/24

Instances

PUBLIC
1.0.0.0/24

192.168.1.2

192.168.1.3

192.168.2.2

192.168.2.3

1.0.0.2

1.0.0.3

Tenant Routers

IPSec
Container

IPSec
Container

17

Service Translation

Northbound Database

Southbound Database

MERCURY
192.168.1.0/24

VENUS
192.168.2.0/24

1.0.0.2

1.0.0.3

Mercury

Venus

VPN SERVICE mercury
LOCAL NETWORK 192.168.1.0/24

IPSEC SITE CONNECTION to-venus
PEER ROUTER 1.0.0.3
PEER NETWORK 192.168.2.0/24

VPN SERVICE venus
LOCAL NETWORK 192.168.2.0/24

IPSEC SITE CONNECTION to-mercury
PEER ROUTER 1.0.0.2
PEER NETWORK 192.168.1.0/24

18

Service Translation

Northbound Database

Southbound Database

MERCURY
192.168.1.0/24

VENUS
192.168.2.0/24

1.0.0.2

1.0.0.3

Mercury

Venus

VPN SERVICE mercury
LOCAL NETWORK 192.168.1.0/24

IPSEC SITE CONNECTION to-venus
PEER ROUTER 1.0.0.3
PEER NETWORK 192.168.2.0/24

MERCURY
192.168.1.0/24

1
Router port for the service container
Includes routes that forward packets to the container

169.254.X.Y/30
2

Redirect rules matching traffic between peer networks
Match IPSec (protocol 50) and IKE (UDP ports 500 and 4500)

3
Container and container group policy
Include container type and configuration

4
Bind the container port to a compute host
Tells the compute to launch the container

19

Service Translation

Northbound Database

Southbound Database

MERCURY
192.168.1.0/24

VENUS
192.168.2.0/24

1.0.0.2

1.0.0.3

Mercury

Venus

VPN SERVICE mercury
LOCAL NETWORK 192.168.1.0/24

IPSEC SITE CONNECTION to-venus
PEER ROUTER 1.0.0.3
PEER NETWORK 192.168.2.0/24

169.254.X.Y/30

ROUTE
Source 192.168.1.0/24
Destination 192.168.2.0/24

RULE REDIRECT
Protocol 50

RULE REDIRECT
Protocol 17 Port 500

RULE REDIRECT
Protocol 17 Port 4500

IKE

IPSec

MERCURY
192.168.1.0/24
Clear

20

Traffic and IPSec Containers

MERCURY
192.168.1.0/24

VENUS
192.168.2.0/24

Instances

PUBLIC
1.0.0.0/24

192.168.1.2

192.168.1.3

192.168.2.2

192.168.2.3

1.0.0.2

1.0.0.3

Tenant Routers

IPSec
Container

IPSec
Container

192.168.1.0/24

192.168.2.0/24

21

Live Demo
VPNaaS with Service Containers

22

Container Scheduling
Controller
Servers

Compute
Servers

Container
Scheduler

Controller nodes coordinate in an active-passive fashion and are
restart tolerant

23

Container Scheduling
Controller
Servers

Compute
Servers

1 Select a compute host when creating a new container
Host eligibility is determined by availability and the operator or service policy

24

Container Scheduling
Controller
Servers

Compute
Servers

1 Select a compute host when creating a new container
Host eligibility is determined by availability and the operator or service policy

2 Monitor container health
Containers report their status to their supervising agent

Failover

25

Container Scheduling
Controller
Servers

Compute
Servers

1 Select a compute host when creating a new container
Host eligibility is determined by availability and the operator or service policy

2 Monitor container health
Containers report their status to their supervising agent

Failover

3 Monitor compute host health and availability
Agents reports their running status to the controllers via the southbound messaging channel

Failover

26

Container Scheduling
Controller
Servers

Compute
Servers

1 Select a compute host when creating a new container
Host eligibility is determined by availability and the operator or service policy

2 Monitor container health
Containers report their status to their supervising agent

3 Monitor compute host health and availability
Agents reports their running status to the controllers via the southbound messaging channel

4 Allow operator orchestration of containers
Manage scheduling via policies or manual migration

27

Group Scheduling Policies
1 Affinity Policies

Define the set of computes
that can host a container for
a particular network service

ANYWHERE affinity

28

Group Scheduling Policies
1 Affinity Policies

Define the set of computes
that can host a container for
a particular network service

HOST-GROUP affinity

29

Group Scheduling Policies
1 Affinity Policies

Define the set of computes
that can host a container for
a particular network service

PORT-GROUP affinity

30

Group Scheduling Policies
1 Affinity Policies

Define the set of computes
that can host a container for
a particular network service

vPort0 vPort1 vPort2 vPort3

Edge Provider
Router

Tenant
Routers

vPort0
Uplink
Ports

vPort1 vPort2 vPort3

31

Group Scheduling Policies
2 Selection Policies

Choosing a particular
compute for a container

based on a static or
dynamic metric

32

Group Scheduling Policies
2 Selection Policies

Choosing a particular
compute for a container
based on a static or live

metric

WEIGHTED policy

1 1 0 0

5 5 2 2

host host0 set container-weight 5
host host6 set container-weight 0

Static metric

0 1 0

33

Group Scheduling Policies
2 Selection Policies

Choosing a particular
compute for a container
based on a static or live

metric

LEAST policy

5 5 2 0

host host0 set container-limit 5
host host3 set container-limit 0

Controller
Server

Live metric

-1
Container

Quota

34

Live Demo
Container Scheduling

35

Test Drive

Quickstart midonet.org
Packages builds.midonet.org

GitHub github.com/midonet
Chat slack.midonet.org

https://www.midonet.org/#quickstart
https://builds.midonet.org/
http://github.com/midonet
http://slack.midonet.org

Q&A
36

Content licensed under a Creative-Commons Attribution license.
Cover photo by Tristan Schmurr.

